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Visualizing nonlinear resonance in classical and quantum 
mechanics 
Marshall Burns 
President, Ennex Technology Marketing, Inc., Austin, Texas 

(Received 22 October 1991; accepted 28 February 1992) 

Results are shown of methods for representing the behavior of one-dimensional hydrogen 
perturbed by an electromagnetic wave. Different methods are used in classical and quantum 
mechanics. The quantum mechanical results appear to demonstrate the existence and overlap 
of resonance subs paces in Hilbert space, analogous to resonance zones in the classical phase 
space. 

INTRODUCTION 

The challenge of physics has always been to see patterns in 
the wash of data impinging on our senses all the time. 
While the quantity of data generated in experiments today 
is dramatically higher than ever before, computers allow us 
to manipulate those data much faster and more creatively, 
so that we can see patterns that would otherwise be hope­
lessly lost. 

Nonlinear dynamics can be particularly frustrating 
because the irregular behavior it entails taunts us with its 
ostensible lack of any pattern. Yet diligent investigation by 
the pioneers of this field, taking advantage of the then-new 
tools of automatic computation, yielded amazing patterns 
in their data. 1 The much greater power and availability of 
today's computers further facilitates our search for regu­
larity in the chaotic. 

In this paper some results are shown of my work to see 
and understand the behavior of one of the simplest possible 
physical systems: a harmonically driven hydrogen atom. 
This system has attracted increased attention over the last 
15 years because of its simplicity, its nonlinearity, and its 
yielding, under great experimental prowess of teams led by 
Bayfield and Koch, to observation. 2 While the classical 
simulations shown in this paper review previously under­
stood results, the quantum mechanical simulations are new 
and demonstrate the existence of a quanta} phenomenon 
corresponding to classical nonlinear resonance zones. 

This Introduction mentions some of the computa­
tional tools used in performing the calculations. Then Sec. 
I describes the mathematical model underlying the calcula­
tions. Section II explains the meaning of nonlinear resonace 
in classical and quantum mechanics, including the phe­
nomenon of resonance zones. Classical simulations demon­
strating nonlinear resonance are shown in Sees. III ( "phys­
ical" phase space) and IV (action-angle coordinates). The 
analogous quantum dynamics are shown in Sec. V. Finally, 
in Sec. VI the conclusions are drawn. In this paper, I focus 
on the computational and graphical aspects of my work. 
For more detail on other theoretical aspects and compari­
son with laboratory results, see Ref. 3. 

The simulations were all performed by integrating the 
relevant equations of motion (Hamilton's equations for the 
classical cases, a linear system of Schrodinger's equations 
for the quantal) using a fourth-order Runge-Kutta algo­
rithm implemented in C. 4 The numerical routines were 
compiled with the MicroSoft C Optimizing Compiler, Ver­
sion 6.0 for running on an 80386-based microcomputer 
with an 80387 math coprocessor, and with the Cray Stan­
dard C Compiler for running on a Cray X-MP. The rou­
tines were written to be portable between the micro and the 
Cray, and to take advantage of vectorization on the Cray. 

The graphics routines for the two-dimensional plots 
were also written inC and run on the microcomputer. The 
three-dimensional classical plots were generated by 
AcroBits AcroSpin, Version 2.0. For the classical simula­
tions, the output was captured on the VGA screen by the 
Catch utility of LogiTech PaintShow Plus, Version 2.21, 
and stored in TIFF files. The color graphics for the quantal 
plots were output to a DataProducts P-132 color printer by 
a special driver written for this purpose. 

I. THE HARMONICALLY DRIVEN STARK STATES OF HYDROGEN 
(HSH) MODEL 

The complex behavior that makes hydrogen interest­
ing arises under a perturbation that destroys a constant of 
its motion, changing it from an integrable system to quasi­
integrable. An integrable system is one for which, in classi­
cal mechanics, the path in phase space is constrained to a 
subspace of dimensionality equal to the number of free­
doms of the system. For example, the one-dimensional har­
monic oscillator is integrable because its orbits in its phase 
space are ellipses (one-dimensional). Quasi-integrability 
means that the system has a control parameter and appears 
to be integrable under some range of values of this param­
eter, but shows itself nonintegrable when the parameter is 
changed. For example, in the case of the HSH system dis­
cussed below, the parameter is the electromagnetic field 
strength, F. 

The perturbation considered here is a monochromat-
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ic, linearly polarized, electromagnetic wave. The energy of 
interaction is just the scalar product of the electric vector of 
the wave with the dipole moment of the atom, so that the 
total system is modeled by (in atomic units, m = e = 1) 

E = Eu + F•x cos(wt), 

where Eu is energy of the unperturbed atom, F and w are 
the peak field strength and angular frequency of the wave, 
and x is the separation vector of the proton and electron. 

The laboratory experiments use excited states pre­
pared by laser excitation in the presence of a static electric 
field. These are extreme Stark or one-dimensional states. In 
these states, the classical orbit or the quantum mechanical 
orbital of the electron lies almost along a straight line and 
the electron remains predominantly on one side of the pro­
ton. The electrostatic field is used only to prepare the initial 
states, and is not active in the region of the microwave 
perturbation. The polarization of the perturbing electro­
magnetic wave is lined up with the Stark axis of the atom. 
So the energy of the perturbed system can be modeled as 

E = Eu + Fx cos(wt) (HSH energy) . 

Thus the system to be studied is a hydrogen atom in an 
extreme Stark state, harmonically driven by a monochro­
matic, electromagnetic wave linearly polarized along the 
direction of the Stark stretching. This is the harmonically 
driven Stark states of hydrogen, or HSH, model. 

For elongated, extreme Stark states, the appropriate 
coordinates for studying the hydrogen atom in quantum 
mechanics are the paraboloidal coordinates. 5 The one-di­
mensional approximation6 is the special case n2 = m = 0 in 
which the state function reduces to7 

(pl,pz,iflln)::::::, ~ e- <p, + p,ll2nLn (PI), 
-v 1Tnz n 

where (p1 + p 2 )/2 is the radial distance, r, from the pro­
ton. This formula shows that the probability drops expon­
entially with r, except on the positive x axis, where p2 is 
zero and the p 1 dependence of the Laguerre polynomial 
cancels the effect of the exponential. (On the negative x 
axis, p 1 is zero.) A plot of the absolute square of this func­
tion for n = 40 is shown in Fig. 1 (where the x axis is called 
"z"). This shows that the probability extends primarily 
along the positive x axis, and drops off rapidly everywhere 
else. 

\._... 

...... __ -- <::::::. 

=== 
FIG. I. Probability distribution for the extreme Stark state 
ln 1,n2,m) = 139,0,0), for which n = 40. [Fig. I from R. Blume! and U. 
Smilansky, Z. Phys. D 6, 83 ( 1987) ]. Thezaxisis this plot corresponds to 
what is called the x axis in the present paper. 
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II. LINEAR AND NONLINEAR RESONANCE IN CLASSICAL AND 
QUANTUM MECHANICS 
In classical mechanics, a linear or harmonic oscillator can 
be defined in several ways, two of which involve a linearity: 
( i) A harmonic oscillator is a system with a linear restoring 
force, F(x) = - kFx. (ii) A harmonic oscillator is a peri­
odic system whose energy is linear in its action coordinate: 
E = E0 + kEI. Of these two definitions, it is the second 
that is more useful for explaining the phenomenon of linear 
resonance. Hamilton's equation for the angle coordinate 
says that the natural frequency of the system is indepen­
dent of the action: w = aE ;aJ = kE. This means that the 
dynamics of the system are unchanged by changes in the 
action values. If energy is absorbed from a perturbation 
with a frequency near w, then that absorption can proceed 
without limit until there is a breakdown that alters the form 
of the energy. 

In a nonlinear oscillator, the energy is a nonlinear 
function of the action, so the frequency does depend on the 
action: w = w (I). Here, if the system has action I and is 
perturbed with a frequency near w(J), then it exchanges 
energy with the perturbing system. But the resultant 
change in the value of the action changes also the value of 
the frequency w. The system moves out of resonance, and 
so it does not keep exchanging energy indefinitely. 

The behavior in classical linear resonance is a steady 
increase in the amplitude of oscillation, and a resultant mi­
gration of the system through regions of higher and higher 
energy in its phase space. The more complicated behavior 
in nonlinear resonance is characterized by the existence of 
resonance zones in the phase space. Inside each such zone, 
the system has a pronounced oscillatory response to the 
perturbation. At moderate perturbation strengths this re­
sponse is localized within the zone with no migration from 
zone to zone. Moreover, whereas in a linear system the 
amplitude of the response is infinite at the exact resonant 
frequency, the amplitude of resonant oscillation at the cen­
ter of each resonance zone is zero. Thus, at moderate per­
turbation strengths, the phenomenon of nonlinear reso­
nance has an inherent stability. 

As the strength of the perturbation is increased, how­
ever, the resonance zones grow in size and overlap each 
other. The boundaries delineating the zones, the KAM sur­
faces, are destroyed and the phase paths of the system wan­
der from zone to zone. This migration is sensitively depen­
dent on the initial conditions of the system, and is therefore 
chaotic. At moderate perturbation strengths, some KAM 
surfaces decay while others remain intact. The migration of 
the system is then restrained by the surviving KAM sur­
faces; the behavior is said to be locally chaotic. At higher 
and higher perturbation strengths, more and more KAM 
surfaces are destroyed. Eventually, the system becomes 
free to wander throughout its entire phase space, and the 
behavior is called globally chaotic. 

There has been some doubt as to whether nonlinear 
resonance can occur in quantum mechanics. The objection 
is stated by pointing out that Schrodinger's equation is lin­
ear, so that there can be no nonlinear phenomena in quan­
tum mechanics. This point of view is in error, however, 
because the linearity of Schrodinger's equation is linearity 
in the state vectors, and the significance of that linearity is 
that the space of quantum mechanical states is a linear (i.e., 



• 

• 

• 

vector) space. What is relevant to the linearity of a reso­
nance phenomenon is not the linearity of the equation of 
motion, but the linearity of the energy in the action coordi­
nate. 

There does not exist a pair of operators to correspond, 
in quantum mechanics, to the action and angle coordinates 
of classical mechanics.8 However, in the classical limit, 
there is a correspondence between the index of the energy 
eigenvalues and the classical action. This suggests a way to 
carry over the concepts of linear and nonlinear resonance 
to quantum mechanics in the special case of large energy 
quantum numbers; that is, to consider linear resonance to 
occur in quantum mechanics when the energy eigenvalues 
of a system with a discrete energy spectrum form a linear 
function of their index: En = E0 +an. The energy level 
spacing is then independent of the energy index: 
E 1 - E = a. This means that the dynamics of the sys-n+ n 
tern are unchanged by changes in the energy level. If energy 
is absorbed in the form of photons of energy a, then that 
absorption can proceed without limit until there is a break­
down that alters the form of the energy. This is indeed the 
case for the quantum mechanical harmonic oscillator, 
whose energy eigenvalues are En = !IUu + n/Uu. 

With this understanding of quantum mechanical lin­
ear resonance, nonlinear resonance is understood to occur 
when the energy eigenvalues form a nonlinear function of 
their index, so the energy level spacing depends on the ener­
gy eigenvalue of the system: En+ I - En = a ( n). If the 
system has energy En and is perturbed electromagnetically 
with a frequency a(n)/fz, then it exchanges photons with 
the perturbing system. But the resultant change in the ener­
gy level also changes the energy level spacing. The system 
moves out of resonance, and so it does not keep exchanging 
photons indefinitely. 

The behavior in quantum mechanical linear reso­
nance is a steady increase in the energy level of the system, 
similar to the situation in classical mechanics. But what is 
there in quantum mechanics to compare to the existence of 
nonlinear resonance zones in the phase spaces of classical 
mechanics? By studying an appropriate physical system on 
the border between classical and quantal behavior, extreme 
Stark states of hydrogen, the present work demonstrates 
the existence of resonance subspaces in the Hilbert space of 
the system (see Fig. 10). In a way that parallels the classi­
cal oscillatory behavior, the system undergoes a spreading 
of its probability within each zone. At moderate perturba­
tion strengths the spreading is localized within the zone 
with no migration from zone to zone (Fig. 11). Thus, at 
moderate perturbation strengths, the phenomenon of non­
linear resonance has, also in quantum mechanics, an inher­
ent stability. (There is, however, nothing to correspond to 
the zero amplitude of oscillation at the precise center of the 
classical resonance zone. ) 

As the strength of the perturbation is increased, the 
quantum mechanical resonance zones grow in size and 
overlap each other, just as in classical mechanics (Fig. 12). 
Since there are no phase paths, there is no parallel concept 
for sensitive dependence on initial conditions, and there­
fore no chaos in the quantum resonance picture. But the 
net result in the behavior is the same: the probabilistic 
spread of the system through a larger region of its space of 
states. 

Ill. CLASSICAL HSH DYNAMICS IN THE PHYSICAL PHASE 
SPACE 
The classical energy of the unperturbed one-dimensional 
hydrogen atom is, in atomic units (m = e = 1 ), 

p 2 1 1 
Eu =1--;=- 212' 

where the first form is in the "physical" coordinates of the 
motion, (x,p), and the second is in action-angle coordi­
nates, (s,/). In physical coordinates, the motion of the 
electron is along an infinitesimally wide ellipse, whose foci 
coincide with the periapsis and apapsis of the orbit. The 
proton therefore lies at the periapsis of the orbit, and the 
apapsis is equal to the major axis of the ellipse, designated 
2a. Action-angle coordinates are discussed in Sec. IV; there 
the unperturbed motion is along a circle. 

When the HSH perturbation is added to this energy in 
the physical coordinates: 

P2 1 
E(x,p,t) =---+ Fx cos(wt), 

2 X 

at a frequency near that of the atomic motion, the effect is 
an oscillatory drift of the apapsis of the orbit, as shown in 
Fig. 2. 

In oscillating within such regions, the orbits necessar­
ily cross themselves. This means that the p-x space cannot 
be the phase space of this motion. The correct phase space 
is the four-dimensional, extended phase space,9 in which 
the motion for each of the orbits shown above lies on a 
torus. If the ratio of the frequencies of the perturbation and 
the atomic motion is irrational, then the motion is aperiod­
ic and fills the torus, as approximated in Fig. 3. If the ratio 
of frequencies is rational, then the motion is periodic, as 
shown in Fig. 4. 

While the proper HSH phase space is four-dimension­
al, the most useful physical perspective comes from taking 

p 

22 

x(xiOOO) 

FIG. 2. Three orbits of the HSH atom viewed in the phase space of the 
unperturbed atom. The experimental parameters are F = 1.947 X 10- 10 

( l.OOOV /em) and w = 1.509X 10-6 
( v = 9.923 GHz). Each orbit oscil­

lates within a region near its initial condition. The ionization boundary 
(orbit for E = 0) is also shown. 
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FIG. 3. The outermost orbit in Fig. 2, plotted in its energy subspace of the 
extended phase space. The orbit lies on a torus with no "donut hole," and 
with longitudinal circumferences extending to p = ± oo. The sense of 
motion is down at the top, spiraling around counterclockwise, and out 
through the bottom. The asterisks are those points lying in one copy of the 
original two-dimensional phase space; they are strobe points and form a 
Poincare section of the orbit. This plot may be thought of as made by 
replotting the outermost orbit in Fig. 2 while rotating the two-dimension­
al phase space about its p axis, which becomes the central axis of the torus. 

a two-dimensional slice through that space, known as a 
Poincare section. This is made by strobing the motion at the 
frequency of the perturbation, and the results are shown in 
Fig. 5. The closed curves in this plot are the cross sections 
of families of interstitial tori growing in the midst of the 
original tori illustrated in Figs. 3 and 4. These interstitial 
tori wind around in between the original tori with various 
winding numbers, which are indicated by the labels in Fig. 
5. The families of interstitial tori, represented in this figure 
by families of closed curves, are the resonance zones of the 
HSHsystem. 

In addition to the regular orbits whose Poincare sec­
tions are closed curves, there are also orbits whose evolu­
tion is chaotic and whose Poincare sections consist of ran­
dom scatterings of dots. This is caused by the overlap of the 
interstitial families of tori, i.e., by the overlap of resonance 
zones, as explained in Sec. II. Two such orbits are included 
in Fig. 5. 

I 

! 

~~ 
I 
I 

IV. CLASSICAL HSH DYNAMICS IN ACTION-ANGLE 
COORDINATES 
The plots in Sec. III are made in the "physical" phase space 
of the unperturbed one-dimensional hydrogen atom, and in 
the extended phase space derived from that space. This 
section looks at the motion in the action-angle coordinates 
of the unperturbed atom. The action is 

/=.-
1 J.pdx=Ja= CT., 

2ffJ 1J 2Eu 

where a is the semimajor axis of the orbit ellipse, and Eu is 
the unperturbed energy. 

The importance of the action-angle coordinates is the 
correspondence, for large values, between the action in 
classical mechanics and the principal quantum number, or 
energy index, in quantum mechanics. 

In this coordinate system, the HSH energy has the 
form 

1 
E(5,I,t) = - -

2 
+ Fx(s)cos(wt) 

21 

1 F/2 oo 

--2 +-- L AM cos(Ms-(J)t), 
2/ 2 M~- 00 

where 

{ 

A=-3 } 
A o- 2J~(M) ' 

M,tO- M 

and J~(z) is the first derivative of the Bessel function of 
the first kind, taken with respect to z and evaluated at z. 
The values of AM for ME{1,2, ... ,5} are 0.650, 0.224, 0.118, 
0.0745, and 0.0520. 

From this perspective the HSH perturbation takes the 
form of an infinite superposition of rotating cosine poten­
tials, indexed by the integers, including a zeroth-order, 
standing cosine potential. The M th cosine potential in the 
series has amplitude FI 2AM/2 and rotates (except for 
M = 0) with angular frequency (J)/M. This frequency is 
either positive or negative (meaning an either counter­
clockwise or clockwise sense of rotation), according to the 

fw=l fw=2 fw=2!3 

FIG. 4. Trajectories of the HSH atom in its energy subspace of the extended phase space, for three special cases where the ratio of frequencies is a rational 
number. The asterisks are strobe points, those points appearing when t is an integer multiple of the perturbation period, 211/ w. Although each orbit 
appears to be a single curve spiraling around from top to bottom, each such curve is actually traversed several times in the calculation, showing that the 
motion is periodic. The different orientations of the p axes in the different plots is for visual purposes only, and is not physically significant. 
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relative sign of M and (J). These rotating potentials can reso­
nate with the underlying motion of the atom, which has 
angularfrequencyd5 /dt = 1/1 3

• The resonance condition 
is I z (M j(J)) 113 for some M. 

If the HSH perturbation is weak enough, then in each 
resonance zone the effect of the perturbation is dominated 
by one particular term. In such a region the effective energy 
is 

1 FI 2A 
E<M>cs-J,t) = --

2 
+ __ M_cos(Ms- (J)t), 

2I 2 

(singly resonant HSH energy). 

I 

28 

-c·:.:.::::.::::.~~ FIG. 5. Strobe plot ofHSH phase paths for var­

I 

34 

ious initial conditions.The perturbing electro­
magnetic wave has peak field strength 
F= 1.947x10- 10 (1.000 V/cm) and angular 
frequency w = 1.509X 10-6 

( v = 9.923 GHz). 
The fraction labeling each island chain indicates 
the winding number of the corresponding orbit 
on its torus. The outer curve is the ionization 
boundary (orbit forE= 0). 

This energy can be used to study the HSH dynamics under 
each individual term of its perturbation, independent of the 
others. The resonances arising from this energy are called 
primary resonances. The interactions of neighboring reson­
ances lead again to an identical resonance structure. Struc­
tures arising from the interaction of two primaries are sec­
ondary resonances. Higher-order structures likewise 
appear. 

Three ways of viewing the motion of a singly resonant 
HSH system are shown in Fig. 6, for the case M = 2. The 
second primary resonance zone is clearly visible in these 
plots . 

The polar plots in Fig. 6, and also Fig. 7, use a graphic 

.i•,•'il.l.: 
.:.:.·•:: 

~~~· .. ·..-~· 
.~~~~~~l' 

A'.J'; .. ,;,'./ 

-;:: .. ··;)" 
r // ...... 

, 

FIG. 6. Three views of the second primary HSH resonance zone, made by plotting the behavior of the "ingly resonant HSH system with M = 2 in three 
different spaces. On the left are shown phase paths in a frame of reference that is rotating along with the cosine potential, i.e., with angular frequency w! M. 
In the center is a Poincare section of the four-dimensional extended phase space, made by strobing the motion at the frequency of the perturbation, w. The 
right-hand view uses the topological equivalence between a torus and a rectangle with opposite sides identified, and plots a single orbit in such a rectangle. 
The experimental parameters for all threeplotsareF= 2X 10- 10 

( l.OV /em) andw = 27T/(S X 106
) ( v = 8.26GHz). In thetwopolarplots the range of 

the radial coordinate, the action, is 1E(78, 162). The rectangular plot covers sE(0,27T] horizontally and t E(O,S X 106 ] on the vertical axis. 
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ME{1,2} /E(95, 115) 

FIG. 7. Strobe plot of the doubly resonant HSH system for ME{l,2}. The 
other parameters are the same as for Fig. 6. The region plotted is that 
between the first and second primary resonances. Several secondary and 
higher-order resonances are visible. 

distortion to increase their useful area. Since the regions of 
interest, those where the resonance zones are located, have 
fairly high values of the action, the center of the (1,5) polar 
plane is of little interest. A (large) neighborhood of the 
origin is therefore deleted, which amounts to a magnifica­
tion of the I scale of the data. For each polar plot, a range is 
given for the action values represented by the radial com­
ponent of the graph. An orbit ofconstant action equal to 
the lower number in this range would appear as a single 
point at the center of the plot. 

The HSH energy with two terms included in the per­
turbation, 

1 FJ2 
E <,M,N> (fi' It)= --+--(AM cos(Ms- wt) 

!>•' 2I 2 2 

+AN cos(Ns- wt)), 

(doubly resonant HSH energy) , 

governs the behavior of the HSH system in a region of 
phase space in which there are two primary resonances 
near each other. This can be used to study the interaction of 
primary resonances to generate secondary and higher-or­
der resonances. An example is shown in Fig. 7 forM= 1, 
N = 2. A great depth of structure is evident. 

The structures seen here are Poincare sections of in­
terstitial tori analogous to those seen in Figure 5 in the 
physical phase space. The winding numbers of the tori in 
this plot are reciprocal to those in the physical phase space. 
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V. QUANTUM DYNAMICS OF THE HSH ATOM 
The energy eigenvalues of the unperturbed, bound, one­
dimensional hydrogen atom are, in atomic units 
(m=e=fz= 1), 

Eun = - 1/2n2 . 

The level splitting for the atom is given by the Balmer for­
mula: 

1(1 1 ) 1 En+l -En =-
2 

2- ( 1)2 --+ 3• 
n n + n-oon 

which, for large values of the principal quantum number, 
approaches the same form as the frequency of the orbital 
motion in classical action-angle coordinates, with I ..... n. 

The HSH energy is obtained by adding the perturba­
tion of an electromagnetic wave polarized along the axis of 
the atom: 

E In) = [ - 2~2 + Fx cos(wt)] In) . 

After expressing the matrix elements of the separation op­
erator, x, in paraboloidal coordinates, 5 this becomes 

"' 1 Fn 2 

Eln) =--In)+-
2n2 4 

o(n 

X I AM(e;""ln+M)+e-;"'1 ln-M)). 
M> -n 

In classical action-angle coordinates (Sec. IV), the 
energy of this system gives rise to resonance between the 
rotation of the unperturbed system and the rotation of a set 
of cosine potentials. In quantum mechanics, resonance is 
explained in terms of the splitting between energy levels. In 
the above energy, the kets In ± M) represent transitions up 
and down by M levels, where M is an integer much smaller 
in magnitude than n. The microwave perturbation is in 
resonance with the atom if its photon size is a multiple by 
some M of the level splitting of the atom. So the resonance 
condition is, for large n, n3wzM, where IM l<t.n. This is 
identical to the resonance condition in the classical case, 
except that the classical theory does not put a limit on the 
magnitude of M. 

As in classical action-angle coordinates, in order to 
study the behavior due to individual resonances and their 
interactions, the energy used in the computer calculations 
includes a single term or a selected set of terms from the 
resonance sum. The resulting simulations demonstrate a 
phenomenon very similar to the classical HSH behavior, in 
that there are regions of confinement of probability in the 
space of energy levels. (In quantum mechanics, a region in 
a parameter space, such as in the space of energy levels, 
corresponds to a subspace in Hilbert space.) Furthermore, 
these regions expand and merge as the strength of the HSH 
perturbation is increased, as do the resonance zones in the 
classical theory. 

V(a). Graphical techniques and singly resonant system 
The initial state given to the computer was a zero-phase, 
definite-energy state, i.e., a state in which the real part of 
the amplitude was 1 for one energy state, and in which the 
corresponding imaginary part as well as the amplitudes for 



all other energy values were all zero. The number of energy 
states included in the integration was a monotonically in­
creasing variable controlled by the program; in essence, the 
space of energy levels was programmed to expand in step 
with the spreading of probability. The probability distribu­
tion was saved at regular intervals, and various other diag­
nostic and metric data were also recorded by the program. 
The calculation would continue either for a preset number 
of intervals, or until the space of energy levels had ceased to 
expand (according to a programmed formula), so that the 
atom could be presumed to have reached a steady state. 

A sample of the data output at a single time step is 
shown in Fig. 8. This shows the energy configuration of the 
atom at a particular time after the turn-on of the perturba­
tion. A complete calculation consists of a sequence of many 
such frames. 

The configuration shown in a single time frame may 
or may not be representative of the evolution of the atom. 
In order to understand what is going on, it is necessary to 
get a unified picture of the entire sequence of frames. The 
simplest way to do this is to plot the frames side by side in 
repeated rows on a page, as in a comic strip. This still makes 
it difficult to get the flavor of the motion. Another tech­
nique that was tried was to flash the sequence of frames on 
the computer screen in quick succession, so as to show the 
evolution of the atom as a movie in energy-probability 
space. This was a lot of fun, but the moment-by-moment 
fleeting of the image prevented the formation of an overall 
impression. Another problem with the movies was the dif­
ficulty of comparing two or several time series with each 
other. 

A method was found for representing the entire evolu­
tion of an atom, from the turn-on of the perturbation 
through steady state, in a single, static picture. The tech­
nique is to use color to represent the magnitude of probabil­
ity; this frees up one of the two dimensions on the plotting 
surface to be used to represent time. The result is called 
here an evolution plot, and is shown in Fig. 9. Any vertical 
slice through this figure contains the same information as 
the probability plot for one time frame, such as Fig. 8, al­
though with much lower resolution, since there are only 
nine colors. This technique makes it possible to see many 
aspects ofthe motion that are not evident from inspecting a 
series of individual frames. It is also easy to compare nu­
merous time series for different values of a variable param­
eter, such as initial state, and quickly observe the effect that 
the variation has on the motion. 

In the evolution plot of Fig. 9, the probability is seen to 
spread out evenly, both above and below the initial state. 

FIG. 8. Probability distribution of an 
approximation to the singly resonant 
HSH system with M = I, 
F=0.95x!0-9 (4.9 V/cm), and 
w = 80- 3 

( v = 13 GHz). The initial 
state is n0 = 80; the state shown is for 
t=6.8x106 (1.6xto- 10 sec). The 
horizontal axis is neJ 60,100 ]. The ver­
tical axis is PE [ 0,0.08]. 

After spreading out to fill the region from about n = 69 to 
95, the probability stays in this region, yet with some oscil­
lation in its structure. The region through which the proba­
bility spreads is identified as the first primary resonance 
zone. 

Unfortunately, when one tries to make a comparison 
of a large number of time series, the evolution plots exhibit 
the same weakness as the representation by individual time 
frames. In order to really see evidence of the quantum reso­
nance zones, it is necessary to further collapse a series of 
evolution plots into a single picture. As can be seen in Fig. 
9, the essential features of the probability distribution re­
main fairly stable after steady state is reached, yet with 
some oscillation in time. This suggests that the essential 
information about a single evolution is preserved if the en­
tire plot is collapsed by averaging the probabilities for each 
energy eigenvalue over the time after steady state is 
reached. This reduces each evolution plot to a vertical slice 
so that a series can be juxtaposed to form a new type of plot, 
in just the same way as the color representations of time 
frames are juxtaposed to make an evolution plot. 

If the parameter that varies between the vertical slices 
is the initial state of the atom, the result is what is called 
here a distribution plot, with an example being Fig. 10. Both 
the vertical and horizontal axes are measured in the index 
of the energy eigenvalue. A value on the horizontal axis 
denotes the initial condition of one particular calculation. 
A value on the vertical axis denotes a possible state in the 
energy-index space of each calculation. The color of the 
plot at the intersection of these two values indicates the 
extent to which a calculation has predicted the spread of 
probability from the initial energy state to a state with the 
energy index indicated on the vertical axis. 

In the distribution plot of Fig. 10, the first primary 
resonance zone shows up as a distinctive square pattern. 
The probability spreads out to fill the square area in a man­
ner that is almost completely independent of the initial 
state of the atom. 

This plot is a compact representation of a large 
amount of data. It comprises vertical slices for a time series 
for each of 181 initial states, with the probabilities in each 
slice being obtained by averaging over several hundred, 
and in many cases upward of 1000 time frames. 

It may be asked if the information in the evolution and 
distribution plots might not be conveyed more simply (and 
less expensively) and with greater resolution in a three­
dimensional relief plot, instead of in color. This was tried, 
but it was found that while relief plots are useful for smooth 
surfaces, they do not adequately represent data with sharp 
or clustered peaks and troughs because one peak can hide 
another nearby peak or trough, and a trough can hide the 
depth of another trough nearby. 

V(b). The doubly resonant HSH system in quantum 
mechanics 
The significance of the resonance zones in classical me­
chanics is that their overlap is the route to chaotic behav­
ior. So a very significant question is "Is there a quantum 
mechanical process analogous to the overlap of classical 
resonance zones?" This question is answered here in the 
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FIG. 9. Evolution plot for the 
singly resonant HSH system in 
quantum mechanics with M = I 
and n0 = 80. The probability is 
seen to spread within a specific 
range of energy levels, and not 
beyond. This is the first primary 
resonance zone in quantum me­
chanics. The experimental pa­
rameters are F= 0.95 X 10- 9 

( 4.9 v /em) and (/) = 80- 3 

= 1.9 X w-• (v= 13 GHz) . 

FIG. 10. Distribution plot for the 
singly resonant HSH atom with 
M = I. On the left is shown the 
series of initial states from 
n0 = 20-200. On the right is an 
expanded view of the vicinity of 
the resonance zone. This scheme 
of pairing a large scale plot with a 
closeup view of the resonance 
zone is used in all the distribution 
plots. The experimental param­
eters are the same as in Fig. 9. 

FIG. II. Distribution plot for the 
doubly resonant HSH atom with 
ME{I,2}, F= 1.9 X I0- '0 (0.98 
v /em) and (/) = so- 3 

=1.9 X I0 - 6 (v=l3 GHz). 
The first and second primary res­
onance zones are visible. 
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affirmative by demonstrating the overlap of neighboring 
quantum mechanical HSH resonance zones. 

Unfortunately, the following distribution plots for 
combined resonances have vertical gaps in them because it 
was not practical to run simulations for all initial states. 
The calculation of a single, complete, distribution plot for 
an isolated resonance takes either several weeks on the very 
fast microcomputer used in this project, or a good part of a 
day on the Cray. The combined resonances run slower and 
thus take even more time. While the gaps make the plots 
harder to read than if all initial states were represented, the 
plots still show enough data to see the behavior of the reso­
nance zones. 

Figure 11 shows a distribution plot for the doubly res­
onant HSH system with ME{ 1 ,2}. The microwave frequen­
cy is the same as is used in Fig. 10, but the field strength is 
reduced by a factor of S. This figure shows unmistakable 
evidence of the first and second primary resonance zones. 
An atom starting in the region of one of these zones spreads 
in probability through that zone, and does not enter the 
other zone. 

Figure 12 shows the result of restoring the field 
strength to the higher value. This plot shows a definite 
overlap of the resonance regions. The square area extends 
from about 70-120, which energy indices correspond to the 
lower edge of the first primary resonance zone and the up­
per edge of the second. For an initial state in either reso­
nance zone, the probability spreads throughout both zones. 
In most parts, the probability still stays primarily in the 
original zone, with only very little spreading into the other 
zone. For n0 = 90, however, which is midway between the 
locations of the two zones, the probability is fairly evenly 
spread out. 

VI. CONCLUSIONS 
In both classical and quantum mechanics, harmonically 
driven Stark states of hydrogen ( HSH) exhibit nonlinear 
resonance between the orbital motion of the atom and the 
microwave perturbation. In classical mechanics, the reso­
nance occurs when the angular frequency, in action-angle 
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FIG. 12. Distribution plot for the 
doubly resonant HSH atom with 
ME{l,2}, F = 0.95 X 10- 9 (4.9 
V / em) and cu = 1.9 X w-• 
( v = 13 GHz). The first and sec­
ond primary resonance zones 
have gone through overlap. 

space, of the unperturbed atom is close to the frequency of 
one or more of an infinite number of rotating cosine poten­
tials representing the perturbation. In quantum mechanics, 
resonance arises when the energy level spacing of the un­
perturbed atom is close to an integer multiple of the micro­
wave photon size. 

This resonance is manifested in the evolution of the 
atom by a structure of resonance zones, regions of stability 
in the space of states of the atom. The resonance zones 
grow with the strength of the HSH perturbation. As they 
grow, neighboring zones overlap, with the result that a sys­
tem starting out in one zone is free to migrate within the 
larger total region of the overlapping zones. In classical 
mechanics this migration is by the evolution of the orbit; in 
quantum mechanics it is by the spreading of probability. 

These results demonstrate that, despite totally differ­
ent mathematical foundations, both classical and quantum 
mechanics do demonstrate the existence and overlap of res­
onance zones for this nonlinear system. In classical me­
chanics these are zones in the atom's phase space, and may 
be plotted in either the physical or action-angle coordi­
nates. In quantum mechanics they are zones in the space of 
the atom's energy levels, which correspond to subspaces in 
its Hilbert space. 

The ability to draw these conclusions comes directly 
from the ability, first to simulate the atom's behavior nu­
merically, and second to manipulate the resulting data 
graphically.lfwe are willing to seek creative ways of repre­
senting our data, we have the opportunity to find the hid­
den patterns in what otherwise seems like an unmanagea­
ble mass of numbers. 
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